Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12816, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550349

ABSTRACT

Aberrant glycosylation of glycoproteins has been linked with various pathologies. Therefore, understanding the relationship between aberrant glycosylation patterns and the onset and progression of the disease is an important research goal that may provide insights into cancer diagnosis and new therapy development. In this study, we use a surface plasmon resonance imaging biosensor and a lectin array to investigate aberrant glycosylation patterns associated with oncohematological disease-myelodysplastic syndromes (MDS). In particular, we detected the interaction between the lectins and glycoproteins present in the blood plasma of patients (three MDS subgroups with different risks of progression to acute myeloid leukemia (AML) and AML patients) and healthy controls. The interaction with lectins from Aleuria aurantia (AAL) and Erythrina cristagalli was more pronounced for plasma samples of the MDS and AML patients, and there was a significant difference between the sensor response to the interaction of AAL with blood plasma from low and medium-risk MDS patients and healthy controls. Our data also suggest that progression from MDS to AML is accompanied by sialylation of glycoproteins and increased levels of truncated O-glycans and that the number of lectins that allow discriminating different stages of disease increases as the disease progresses.


Subject(s)
Biosensing Techniques , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Lectins , Glycosylation , Glycoproteins/metabolism , Myelodysplastic Syndromes/therapy , Plasma/metabolism
2.
Blood Coagul Fibrinolysis ; 33(4): 228-237, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35067535

ABSTRACT

Here, we present the first case of fibrinogen variant FGG c.8G>A. We investigated the behaviour of this mutated fibrinogen in blood coagulation using fibrin polymerization, fibrinolysis, fibrinopeptides release measurement, mass spectrometry (MS), and scanning electron microscopy (SEM). The case was identified by routine coagulation testing of a 34-year-old man diagnosed with thrombosis. Initial genetic analysis revealed a heterozygous mutation in exon 1 of the FGG gene encoding gamma chain signal peptide. Fibrin polymerization by thrombin and reptilase showed the normal formation of the fibrin clot. However, maximal absorbance within polymerization was lower and fibrinolysis had a longer degradation phase than healthy control. SEM revealed a significant difference in clot structure of the patient, and interestingly, MS detected several posttranslational oxidations of fibrinogen. The data suggest that the mutation FGG c.8G>A with the combination of the effect of posttranslational modifications causes a novel case of hypofibrinogenemia associated with thrombosis.


Subject(s)
Afibrinogenemia , Fibrinogens, Abnormal , Hemostatics , Thrombosis , Adult , Afibrinogenemia/complications , Afibrinogenemia/genetics , Fibrin/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Fibrinogens, Abnormal/genetics , Fibrinogens, Abnormal/metabolism , Humans , Male , Oxidative Stress , Protein Processing, Post-Translational , Thrombosis/complications , Thrombosis/genetics
3.
Anal Chem ; 91(22): 14226-14230, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31617351

ABSTRACT

The onset and progression of numerous serious diseases (e.g., various types of malignancies, neurodegenerative diseases, and cardiac diseases) are, on a molecular level, associated with protein modifications and misfolding. Current methods for the detection of misfolded proteins are not able to detect the whole misfolded subproteome and, moreover, are rather laborious and time consuming. Herein, we report on a novel simple method for the detection of misfolded proteins employing a surface plasmon resonance (SPR) biosensor and heat shock protein 70 (Hsp70) that recognizes and traps misfolded proteins in a nucleotide-dependent manner. We use this method for the detection of misfolded proteins in blood plasma of patients with various subtypes of myelodysplastic syndromes (MDS) and healthy donors. Our results reveal significantly elevated levels of misfolded proteins in the two stages of MDS that are most affected by oxidative stress: low-risk (RARS) and intermediate-risk (RCMD) patients. This approach can be extended to a variety of diseases and provides unique insights into the thus far unexplored area of blood proteome.


Subject(s)
Blood Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Myelodysplastic Syndromes/metabolism , Protein Folding , Surface Plasmon Resonance/methods , Blood Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Humans , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/diagnosis , Oxidative Stress
4.
Sci Rep ; 9(1): 12647, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477761

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies with a high risk of transformation to acute myeloid leukemia (AML). MDS are associated with posttranslational modifications of proteins and variations in the protein expression levels. In this work, we present a novel interactomic diagnostic method based on both protein array and surface plasmon resonance biosensor technology, which enables monitoring of protein-protein interactions in a label-free manner. In contrast to conventional methods based on the detection of individual biomarkers, our presented method relies on measuring interactions between arrays of selected proteins and patient plasma. We apply this method to plasma samples obtained from MDS and AML patients, as well as healthy donors, and demonstrate that even a small protein array comprising six selected proteins allows the method to discriminate among different MDS subtypes and healthy donors.


Subject(s)
Myelodysplastic Syndromes/diagnosis , Protein Interaction Mapping , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Myelodysplastic Syndromes/blood , Principal Component Analysis , Protein Binding , Surface Plasmon Resonance , Young Adult
5.
Biosens Bioelectron ; 70: 226-31, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25829219

ABSTRACT

We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.


Subject(s)
Acrylamides/chemistry , Biosensing Techniques/instrumentation , MicroRNAs/analysis , MicroRNAs/chemistry , Polymers/chemistry , Surface Plasmon Resonance/instrumentation , Cell Fractionation , Coated Materials, Biocompatible/chemical synthesis , Complex Mixtures/analysis , Equipment Design , Equipment Failure Analysis , MicroRNAs/genetics , Reproducibility of Results , Sensitivity and Specificity
6.
Thromb Res ; 134(4): 901-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25074738

ABSTRACT

INTRODUCTION: Congenital dysfibrinogenemia and hypofibrinogenemia are rare diseases characterized by inherited abnormality in the fibrinogen molecule, resulting in functional defects (dysfibrinogenemia) or low fibrinogen plasma levels (hypofibrinogenemia). MATERIALS AND METHODS: We have described two abnormal fibrinogens - fibrinogen Hranice (γ Phe204Val) and Praha IV (γ Ser313Gly). The carrier of the Hranice mutation was a 40-year-old female with low fibrinogen levels. The carrier of the Praha IV mutation was a 42-year-old man with a history of idiopathic thrombosis, low functional fibrinogen levels, and a prolonged thrombin time. RESULTS: Fibrin polymerization kinetics measurement was normal in both cases (after the addition of either thrombin or reptilase), as well as was fibrinolysis. Scanning electron microscopy and confocal microscopy revealed significantly wider fibers in both cases, when compared with fibers prepared from healthy control samples. Although both cases are situated in the γ-nodule, they manifested differently. While the γ Ser313Gly mutation manifested as dysfibrinogenemia with a thrombotic background, the γ Phe204Val mutation manifested as hypofibrinogenemia without clinical symptoms. The mutation sites of both fibrinogens are in highly conserved regions of the fibrinogen γ chains. γ Ser313 is situated in a class 16:18 ß hairpin and is involved in hydrogen bonding with γ Asp320. γ Phe204 is situated in an inverse γ turn and may be involved in π-π interactions. CONCLUSIONS: Both mutations cause conformational changes in fibrinogen, which lead either to impaired fibrinogen assembly (fibrinogen Hranice) or abnormal fibrinogen function (fibrinogen Praha IV).


Subject(s)
Afibrinogenemia/congenital , Fibrinogen/genetics , Fibrinogens, Abnormal/genetics , Point Mutation , Adult , Afibrinogenemia/blood , Afibrinogenemia/genetics , Afibrinogenemia/metabolism , Female , Fibrin/genetics , Fibrin/metabolism , Fibrin/ultrastructure , Fibrinogen/metabolism , Fibrinogen/ultrastructure , Fibrinogens, Abnormal/metabolism , Fibrinogens, Abnormal/ultrastructure , Fibrinolysis , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...